Responsable : Nicolas BORGHI
In multicellular organisms, cells generate and experience mechanical forces that are propagated throughout the organism. Ultimately, these forces may shape tissues and organs, and regulate genetic programs. The molecular mechanisms of mechanical force transmission and transduction into biochemical signals are, however, poorly understood.
Our project focuses on the macromolecular complexes that transmit and transduce mechanical cues within and between cells, and the cell functions affected by these cues. We are interested in plasma membrane adhesion receptors, transmembrane complexes of the nuclear envelope, and their functions in cell adhesion, migration, proliferation, and transcriptional activity.
To address this goal, we apply and develop genetically encoded biosensors and advanced microscopy and micromanipulation methods in cell culture model systems. This combination enables to dynamically and quantitatively control and monitor the behavior of protein complexes and cells in a wide range of time- and length-scales.